
CONFIDENTIAL — PLEASE DO NOT FORWARD OR SHARE

1

AdChoices User Preferences API
Specification

Version 1

Digital Advertising Alliance
Feb 17, 2023

CONFIDENTIAL — PLEASE DO NOT FORWARD OR SHARE

2

Table of Contents

Introduction
API Specification

AdChoices Function
AdChoices Object

User Preferences Object
Participant Object
Category Object

Examples
Example 1: No Global Preference, Three Participant Preferences, One Category
Preference
Example 2: Global Preference Only

IFRAMEs
In-App Details

Typical Implementation Approach
Web

CMPs
Ad Servers, Exchanges, DSPs, DMPs, CDPs, etc.

App
CMPs
Native Code (App Environment)
Ad SDK Providers
Ad Serving Code (JavaScript in WebViews)

Example Code
CMP Stub
Querying the API

Appendix 1: Data Flow Illustration – Web Scenario

CONFIDENTIAL — PLEASE DO NOT FORWARD OR SHARE

3

Introduction and Scope
The purpose of the AdChoices-based Self-Regulatory Programs across the world is to promote
enhanced transparency (generally speaking, data collection, use and disclosure notifications
that sit outside of the privacy policy) and consumer control, as well as other elements of the
DAA-family Self-Regulatory Frameworks (regardless of geographic region) related to the
collection and use of data for Interest Based Advertising (IBA), sometimes referred to as online
behavioral advertising (OBA).

This specification defines a standard JavaScript API which enables ad-serving code running on
a site or app to discover IBA preferences for the user that can be known by DAA Recognized
CMPs. It draws on patterns that may be familiar to implementers introduced in other industry-
standard APIs such as the IAB’s MRAID and CMP APIs.1

In a web environment, CMPs provide an implementation of the JavaScript API described in this
document. Typically, this would be included in the typical script payload a publisher installs on
their site. In an app environment, it is typically the responsibility of advertising SDKs to provide
the API implementation, retrieving the IBA preferences in the manner described in “In-App
Details” below.

The term “User Preferences API implementer” will be used in this document to refer to the CMP
or the advertising SDK as is appropriate for the environment, with the terms “CMP” and “ad
SDK” used where that party specifically is responsible.

This specification works in concert with the AdChoices String Specification; it presents the same
data via a JavaScript API. Accordingly, this specification will reference the AdChoices String
Specification frequently; refer to it for context and details. In other words, this specification
should be viewed as a companion document to the AdChoices String Specification.

The primary intended audience for this specification is DAA Recognized CMPs and advertising
SDK companies (for in-app environments). It is specifically intended for a technical audience
(e.g., product managers, engineers, etc.).

1 Some patterns and examples are adapted from the Transparency and Consent Framework
Consent Management Platform API v2 from IAB Tech Lab, which is licensed under the Creative
Commons Attribution 3.0 License. The API interface and message payload is similar to that
specification, but modified to reflect the needs for AdChoices user preferences.

https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/

CONFIDENTIAL — PLEASE DO NOT FORWARD OR SHARE

4

API Specification

AdChoices Function
User Preferences API implementers must provide a global function on the page or app named
daaGetAdChoices. This function must be present before any ad serving code loads. It can
initially be a stub of some sort, but any calls to it must eventually be queued and eventually
serviced (i.e. callback called) after the full code has been loaded and after the stored AdChoices
information has been retrieved, if any.

The function has the following form:

daaGetAdChoices(callback)

The caller provides a callback function which will be called asynchronously and takes a single
argument: an AdChoices object (described below).

AdChoices Object
This object wraps the actual user preferences payload and describes the outcome of the User
Preferences API Implementer’s attempt to retrieve AdChoices preferences.

Key Type Description

success Boolean True if the implementer could retrieve stored AdChoices
information for the user, otherwise false.

userPreferences Object;
optional

A user preferences object, see below. Only present if
AdChoices information could be retrieved.

User Preferences Object
This object describes the user’s preferences, if available. It contains an AdChoices string as
defined by a consumer using the DAA Token and/or Category tools, as well as the same data
presented in structured form for ease of access:

Key Type Description

adChoicesString String The AdChoices string for the user; see AdChoices String
Specification.

version Number Version of preferences information; current version is 1.

CONFIDENTIAL — PLEASE DO NOT FORWARD OR SHARE

5

timestamp Number The timestamp at which the preferences was created as
seconds since Unix epoch.

globalChoice Number The user’s global IBA choice; see Appendix 3 of the
AdChoices String Specification.

participants Array of
Participant
objects

An array of Participant objects, describing the user’s per-
participant choices. This will be an empty array when a
global status other than 0 has been provided, since the
global status applies to all, and providing per-participant
statuses would give no useful additional information.

The array will not contain objects for participants when
their choice status is 0.

categories Array of
Category
objects

An array of Category objects, describing the user’s per-
category choices. Objects should not be included for
categories with a choice status of 0 since this provides no
useful information. In the event that there are no category
preferences, the array will be empty.

Participant Object

Key Type Description

participantId Number The ID of the participant described; see Appendix 1 of the
AdChoices String Specification for how to retrieve
metadata about DAA participants integrated into the
relevant industry tools.

choice Number The user’s choice for this participant; see Appendix 3 of
the AdChoices String Specification.

Category Object

Key Type Description

categoryId Number The ID of the category described; see Appendix 2 of the
AdChoices String Specification for how to retrieve
metadata about categories.

preference Number The user’s preference for this category; see Appendix 4 of
the AdChoices String Specification.

CONFIDENTIAL — PLEASE DO NOT FORWARD OR SHARE

6

Examples
These examples align with and match the numbered examples in the AdChoices String
Specification.

Example 1: No Global Preference, Three Participant Preferences, One Category
Preference
{
 success: true,
 userPreferences: {
 adChoicesString: "BYVHiWQADABEAIQAyABBIEA",
 version: 1,
 timestamp: 1632756313,
 globalChoice: 0,
 participants: [
 {
 participantId: 1,
 choice: 1
 },
 {
 participantId: 2,
 choice: 1
 },
 {
 participantId: 3,
 choice: 2
 }
],
 categories: [
 {
 categoryId: 72,
 preference: 1
 }
]
 }
}

Example 2: Global Preference Only
{
 success: true,
 userPreferences: {
 adChoicesString: "BYVHiWRAAAAA",
 version: 1

CONFIDENTIAL — PLEASE DO NOT FORWARD OR SHARE

7

 timestamp: 1632756313,
 globalChoice: 1,
 participants: [],
 categories: []
 }
}

IFRAMEs
Ad serving code routinely runs in IFRAMEs. To support this, User Preferences API
implementers must insert an empty IFRAME into the parent frame named
daaAdChoicesSupported. This must be inserted before any ad serving code runs. Ad
serving code will inspect to see if there is a frame named this in any ancestor in which case it is
running inside an IFRAME.

In this case, ad serving code will use postMessage() to dispatch a message out of the IFRAME
which will be handled by the User Preferences API implementer. The message has the following
form:

{
 daaGetAdChoices: {
 id: "id string"
 }
}

Where “id” is an arbitrary string set by the requester to uniquely identify the request to match it
up to the response.

The User Preferences API implementer will, in turn, respond to the request by using
postMessage() to provide a message in this form to the requesting IFRAME:

{
 daaAdChoicesResponse: {
 id: "id string",
 success: [true/false], // As per the AdChoices object
 userPreferences: {} // User preferences object and subordinates
 }
}

CONFIDENTIAL — PLEASE DO NOT FORWARD OR SHARE

8

In-App Details
The mobile app environment is complicated by the fact that activity spans two technologically
distinct environments: the native app environment, and WebView(s) in which ads are displayed.

CMPs provide for user consent and IBA preferences management in-app by providing an SDK
that the application developer includes in the code for the app. Companies that provide
advertising for app publishers (i.e. ad networks, ad exchanges, mediation platforms etc.) provide
an advertising SDK (“ad SDK”) which is responsible for managing the ad space and providing
the WebView in which the ads are displayed. In some cases, a single company may act as both
CMP and advertising provider, and provide a single consolidated SDK. In that case, they take
on both the roles described as “CMP SDK” and “ad SDK” in the following text.

DAA Recognized CMP SDKs must store AdChoices preferences using the operating system’s
mechanism for storing user settings. In the case of iOS, this is NSUserDefaults. In the case of
Android, this is SharedPreferences.

DAA Recognized CMPs must store an AdChoices string, formatted per the AdChoices String
specification, in a key named daaAdChoicesString. This key should not be set until the CMP
has looked up stored preference information. Native code wishing to consume the information
should use the OS’ provided mechanism to listen for changes, i.e.
NSUserDefaultsDidChangeNotification
for iOS or SharedPreferences.OnSharedPreferenceChangeListener for Android.

Ad SDKs must retrieve the stored daaAdChoicesString user setting and listen for any
subsequent changes. They then provide the JavaScript API inside any webviews used for ads,
so that ad serving code running in the webview can access the information.

Typical Implementation Approach

Web

CMPs
At page load, the DAA Recognized CMP will ensure that the daaGetAdChoices() function is
at least defined and able to be called, before any ad serving code runs. However, execution of
the callback function can be deferred until further script loading.

The CMP will attempt to look up stored AdChoices preferences received from the DAAs’ tools.
How to persist these preferences is up to the CMP, but it will typically involve storing the choices
string in a third-party cookie or server-side tied to a token (mobile advertising ID, hashed e-mail,
etc). This could also be cached in a first-party cookie or localStorage to speed lookup on
subsequent page loads.

https://en.wikipedia.org/wiki/WebView
https://developer.apple.com/documentation/foundation/nsuserdefaults
https://developer.android.com/training/data-storage/shared-preferences.html

CONFIDENTIAL — PLEASE DO NOT FORWARD OR SHARE

9

The callback is called asynchronously only after the attempt to retrieve AdChoices information
has occurred and the CMP has determined that it has such information (or does not). It’s
expected that this typically means a delay of a second or more until the callback is called while
lookup occurs if it is not already locally cached.

Ad Servers, Exchanges, DSPs, DMPs, CDPs, etc.
Participants who serve ads or collect data about users, such as ad servers, exchanges, DSPs,
DMPs, CDPs, etc. will call the daaGetAdChoices() function as a way to get real-time
information about the user’s AdChoices preferences.

In this case, since the preferences are tied to a token (hashed e-mail, phone number, etc.), the
user may not already be known by that token to the ad serving participant or they may not know
the token at time of ad serving. For this reason, using the API allows for the preferences to be
retrieved in use cases where the brand or publisher has provided the ID token to the CMP to
identify the appropriate user preferences string. (See Appendix 1 for a data flow diagram.)

Participants should:

1. Check if the daaGetAdChoices() function exists in the current frame. If it does, the
page has a CMP installed that supports this API, and it is directly available for the
participant to use ‘getAdChoices’ directly to retrieve preference information.

2. If the function is not present, it is either because the API is not supported or the
participant’s code is inside an IFRAME on the page. The participant’s code should
search ancestor frame(s) to see if there is another IFRAME named
daaAdChoicesSupported present in an ancestor. This confirms that the
postMessage() approach should be used instead.

If a CMP supporting AdChoices is not found using either of those methods, participants should
proceed as they usually do whenever information is not available. If participants need to know
the users’ preferences before ad decisioning, they should delay ad decisioning until after the
callback occurs. Participants may wish to set a reasonable timeout to account for scenarios in
which the CMP does not call the callback in a timely manner.

Participants should send the AdChoices string to themselves (so that it can be passed on to
other parties), but may also choose to consume the structured, parsed information in the
JavaScript object for convenience in notifying themselves of preferences relevant to their ad
serving decisioning.

CONFIDENTIAL — PLEASE DO NOT FORWARD OR SHARE

10

App

CMPs
The CMP SDK will attempt to look up stored AdChoices preferences received from the DAAs’
tools. It will do so by querying the CMP’s servers with a token such as a hashed e-mail address.
If AdChoices preferences have been expressed for the token in question, they would have been
sent to the CMP at the time the user expressed those preferences using the YourAdChoices
tool.

On successful retrieval of preferences, the CMP SDK will persist these to user settings on-
device in the manner described in “In-App Details” above.

Native Code (App Environment)
In cases where native code is integrated into the app, AdChoices preferences are retrieved by
looking up the stored user setting and listening for changes as described in “In-App Details”
above.

One example of this would be an analytics SDK which wishes to incorporate the AdChoices
preferences into app analytics. An ad SDK provider is another such example, with additional
obligations described below.

Ad SDK Providers
Ad SDK providers are responsible for the User Preferences API implementation. They will
ensure that inside of any WebView in which ads are displayed, the daaGetAdChoices()
function is at least defined and able to be called, before any ad serving code runs. However,
execution of the callback function can be deferred until further script loading.

The ad SDK will attempt to look up stored AdChoices preferences from the on-device user
settings and listen for any changes that may occur in the manner described in “In-App Details”
above. The ad SDK conveys this information into the WebView in whatever manner they wish,
so long as the User Preferences API implementation they provide has access to it.

Ad Serving Code (JavaScript in WebViews)
Participants (typically ad servers, DSPs, etc.) whose ad serving JavaScript is loaded inside a
WebView will call the daaGetAdChoices() JavaScript function provided by the ad SDK as a
way to get real-time information about the user’s AdChoices preferences. They do so in the
exact same manner as described in “Web” above. However, use of the daaGetAdChoices()
function is limited to JavaScript in the WebView. If the participant in question is also the ad SDK
provider, they should follow the instructions above to retrieve the AdChoices preferences within

CONFIDENTIAL — PLEASE DO NOT FORWARD OR SHARE

11

the app environment, and provide the JavaScript API for any “downstream” JavaScript (such as
ad serving code from a third-party ad server).

For example, an ad exchange may offer an ad SDK to directly manage the display of ads in the
app, but may also support integrations in which the app publisher trafficks an ad tag in their
publisher ad server, with this loaded in a WebView provided by some other ad SDK. In the case
where the ad exchange is also providing the ad SDK, they would follow the instructions above in
“Native Code (App Environment)” and “Ad SDK Providers”. In the case where their ad tag is
trafficked in the publisher ad server, they never interact with the native app environment, and
will call the daaGetAdChoices()function (provided by the ad SDK) from their ad serving code.

Example Code

CMP Stub
This is an example of a stub implementation; per “Typical Implementation Approach” above, the
CMP will ensure that the daaGetAdChoices() function is at least defined and able to be
called, before any ad serving code runs. Implementing a stub that is loaded before any ad
serving code is a suitable approach.

(function () {

 /**
 * AdChoices User Preferences API CMP stub implementation example.
 */

 const makeStub = () => {
 const AD_CHOICES_LOCATOR_NAME = 'daaAdChoicesSupported';
 const queue = [];
 const currentWindow = window;
 let frameLocator = currentWindow;
 let cmpFrame;

 function addFrame() {
 const doc = currentWindow.document;
 const otherCMP =
!!(currentWindow.frames[AD_CHOICES_LOCATOR_NAME]);

 if (!otherCMP) {
 if (doc.body) {
 const iframe = doc.createElement('iframe');

CONFIDENTIAL — PLEASE DO NOT FORWARD OR SHARE

12

 iframe.style.cssText = 'display:none';
 iframe.name = AD_CHOICES_LOCATOR_NAME;
 doc.body.appendChild(iframe);
 } else {
 setTimeout(addFrame, 5);
 }
 }

 return !otherCMP;
 }

 function daaGetAdChoicesHandler(callback) {
 if (!callback) {
 /**
 * Shortcut to get the queue when the full CMP
 * implementation loads; it can call window.daaGetAdChoices()
 * with no arguments to get the queued arguments, before it
 * overrides the function to provide the full implementation.
 */

 return queue;
 } else {
 /**
 * Push callback into queue for full CMP implementation
 * to deal with.
 */
 queue.push(callback);
 }
 }

 function postMessageEventHandler(event) {
 const msgIsString = typeof event.data === 'string';
 let json = {};

 if (msgIsString) {
 try {
 /**
 * Try to parse message into JSON.
 */
 json = JSON.parse(event.data);
 } catch (ignore) {
 }
 } else {
 json = event.data;

CONFIDENTIAL — PLEASE DO NOT FORWARD OR SHARE

13

 }

 const payload = (typeof json === 'object') ?
json.daaGetAdChoices : null;

 if (payload) {
 window.daaGetAdChoices(
 function (adChoicesObject) {
 let returnMsg = {
 daaAdChoicesResponse: {
 userPreferences: adChoicesObject.userPreferences,
 success: adChoicesObject.success,
 id: payload.id,
 },
 };

 if (event && event.source && event.source.postMessage) {
 event.source.postMessage((msgIsString) ?
JSON.stringify(returnMsg) : returnMsg, '*');
 }
 }
);
 }
 }

 /**
 * Iterate up to the top window checking for an already-created
 * "daaAdChoicesSupported" frame at every level. If one exists
 * already then a CMP implementing this API is already loaded, and
 * provision of the stub does not proceed.
 */
 while (frameLocator) {
 try {
 if (frameLocator.frames[AD_CHOICES_LOCATOR_NAME]) {
 cmpFrame = frameLocator;
 break;
 }
 } catch (ignore) {
 }

 // If we're at the top and no cmpFrame
 if (frameLocator === currentWindow.top) {
 break;
 }

CONFIDENTIAL — PLEASE DO NOT FORWARD OR SHARE

14

 // Move up
 frameLocator = frameLocator.parent;
 }

 if (!cmpFrame) {
 // No "daaAdChoicesSupported" frame found - initialize IFRAME
 // and assign functions and event listeners.
 addFrame();
 currentWindow.daaGetAdChoices = daaGetAdChoicesHandler;
 currentWindow.addEventListener('message',
postMessageEventHandler, false);
 }
 };

 if (typeof module !== 'undefined') {
 module.exports = makeStub;
 } else {
 makeStub();
 }
}());

Querying the API
This example shows how a participant such as ad servers, exchanges, DSPs, DMPs, CDPs,
etc. can interact with the API to retrieve user preferences.

(function() {
 // Check if CMP-provided function 'daaGetAdChoices' is present in
 // 'current' window instance
 let adChoicesFrame;

 if (typeof window.daaGetAdChoices !== "undefined") {

 console.log("CMP 'daaGetAdChoices' available in current
window!")
 const adChoicesCallback = (adChoicesObject) => {
 console.log(adChoicesObject);
 }
 window.daaGetAdChoices(adChoicesCallback)
 }
 else {
 // In case 'daaGetAdChoices' is not available in current window
 // fallback to IFRAME approach: look for defined CMP IFRAME
 // and store its reference for later use in postMessage

CONFIDENTIAL — PLEASE DO NOT FORWARD OR SHARE

15

 // Start at 'current' window
 let frame = window;

 // Store CMP frame reference with current variable

 // map of calls
 const cmpCallbacks = {};
 while(frame) {

 try {
 if (frame.frames['daaAdChoicesSupported']) {

 adChoiceFrame = frame;
 break;

 }

 } catch(ignore) {}

 if(frame === window.top) {

 break;

 }

 frame = frame.parent;

 }
 }

 /**
 * Set up a daaGetAdChoicesClient proxy method to do the postMessage
 * and map the callback. From the client view, this function behaves
 * identically to the AdChoices CMP API's `daaGetAdChoices` call
 */

 window.daaGetAdChoicesClient = function(callback) {

 if (!adChoicesFrame) {

 callback({msg: 'CMP not found'}, false);

 } else {

 const adClientId = Math.random() + '';

CONFIDENTIAL — PLEASE DO NOT FORWARD OR SHARE

16

 const msg = {
 daaGetAdChoices: {
 id: adClientId,
 },
 };

 /**
 * Map the callback for lookup on response
 */

 cmpCallbacks[adClientId] = callback;
 adChoicesFrame.postMessage(msg, '*');

 }

 };

 function postMessageHandler(event) {

 /**
 * When we get the return message, call the mapped callback
 */

 let json = {};

 try {

 /**
 * If this isn't valid JSON then this will throw an error
 */

 json = typeof event.data === 'string' ? JSON.parse(event.data) :
event.data;

 } catch (ignore) {}

 const payload = json.daaAdChoicesResponse;

 if (payload) {

 /**
 * Messages we care about will have a payload
 */
 if (typeof cmpCallbacks[payload.id] === 'function') {

CONFIDENTIAL — PLEASE DO NOT FORWARD OR SHARE

17

 /**
 * Call the mapped callback and then remove the reference
 */

 cmpCallbacks[payload.id](payload);
 cmpCallbacks[payload.id] = null;

 }
 }
 }

 window.addEventListener('message', postMessageHandler, false);

}());

Appendix 1: Data Flow Illustration – Web Scenario

	Introduction and Scope
	API Specification
	AdChoices Function
	AdChoices Object
	User Preferences Object
	Participant Object
	Category Object

	Examples
	Example 1: No Global Preference, Three Participant Preferences, One Category Preference
	Example 2: Global Preference Only

	IFRAMEs
	In-App Details

	Typical Implementation Approach
	Web
	CMPs
	Ad Servers, Exchanges, DSPs, DMPs, CDPs, etc.

	App
	CMPs
	Native Code (App Environment)
	Ad SDK Providers
	Ad Serving Code (JavaScript in WebViews)

	Example Code
	CMP Stub
	Querying the API

	Appendix 1: Data Flow Illustration – Web Scenario

